ULST Timisoara

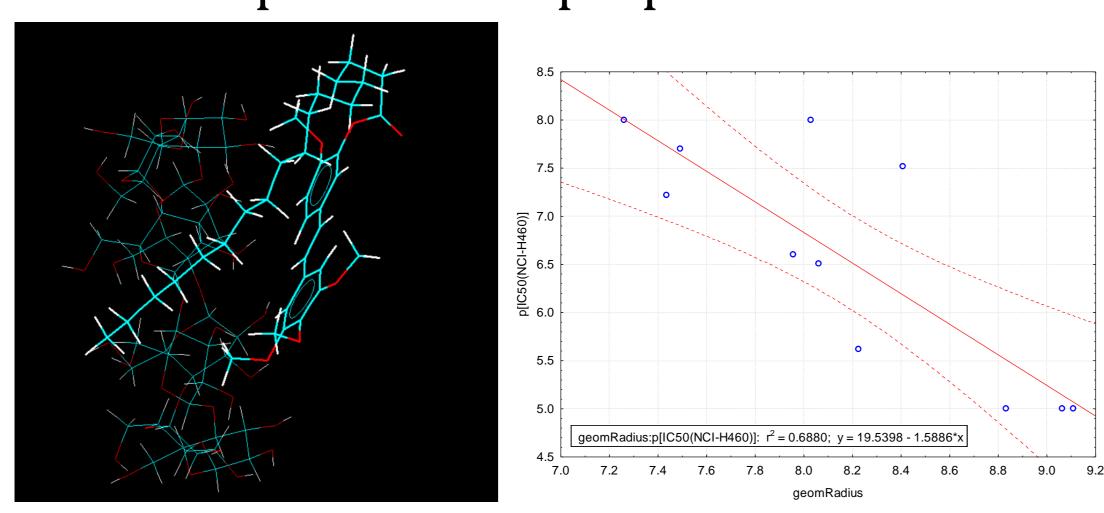
Multidisciplinary Conference on Sustainable Development

15-16 May 2025

A theoretical insight on the enhancement of bioavailability and bioaccessibility of some natural stilbene-based lipopolyphenols with bioactivity against cardio-vascular diseases by cyclodextrin nanoencapsulation

Darius-Adrian Costandana ¹, Agnes Cupin ², Marinela Fiţoiu (Voin) ², Anamaria Pop (Mateuţ) ², Nicoleta G. Hădărugă ², Daniel I. Hădărugă ^{1,2,*}

¹ Polytechnic University of Timişoara, Romania ² University of Life Sciences "King Mihai I" from Timişoara, Romania


Abstract: The goal of the study was the evaluation of the influence of hydrophobic moiety of natural stilbene-based derivatives on the anticarcinogenic activities as well as the bioavailability and bioaccesibility enhancement by cyclodextrin nanoencapsulation.

Introduction

Natural compounds having stilbene moiety exhibit various biological activities. Derivatization to the more hydrophobic stilbene-based lipopolyphenols can enhance their biological activities, while the cyclodextrin (CD) nanoencapsulation will enhances the bioavailability and bioaccessibility [1-3].

Materials and method

Eight stilbene-based lipopolyphenols, the corresponding polyphenols and colchicine (positive control) were optimized by *MM+* molecular modelling and conformational analysis (HyperChem 7.52 package, StatSoft). Minimum energy conformations were used for determination of more than one thousand molecular descriptors using *PaDEL-Descriptor* software. QSAR models and CD: lipopolyphenol complexes were proposed.

Figure 1. Optimized γ -CD/epi-combretastatin A4-stearic acid lipopolyphenol derivative complex

Eq.1. $pIC_{50(NCI-H460)}$ vs. Geometric Radius correlation

Results and discussion

Valuable QSAR models with constitutional and topological descriptors were obtained (Eq. 1). On the other hand, in vacuo and water periodic box docking experiments (MM+) for α -, β - and γ -CD / lipopolyphenol complexes at 1:1 molecular ratio revealed high stability and possibility of controlled release of the biologically active compounds to the biological target, especially for larger CDs with transstilbene-based lipopolyphenols (interaction energies of 24.0 kcal/mol and 32.4 kcal/mol for 1:1 complexes of epi-combretastatin A4-stearic acid lipopolyphenol derivative with β - and γ -CD, respectively, Figure 1).

Conclusion

As a conclusion, natural stilbene antioxidant compounds from some bushwillow species (*Combretum afrum* (Eckl. & Zeyh.) Kuntze or *C. leprosum* Mart.) and especially from grapes and wines (*Vitis* spp.) can be efficiently derivatized to more hydrophobic bioconjugates using fatty acids and further nanoencapsulated in natural CDs for obtaining pharmaceutical or food-grade nanomaterials.

$$\log \left(\frac{1}{IC_{50}}\right)_i = 19.540(\pm 2.922) - 1.589(\pm 0.357) \cdot [GeomRadius]_i$$

$$r_{(KB-3-1)} = 0.812, r_{(NCI-H460)} = 0.829, r_{(HEK293)} = 0.833$$
 (Eq. 1)

Acknowledgement: S. Funar-Timofei ("Coriolan Drăgulescu" Institute of Chemistry, Romanian Academy) for the help with HyperChem 7.52 package.

References: [1] Kineman *et al., Nutr & Cancer* **2010**, *62*, 351-361; [2] Crauste *et al., Eur J Org Chem* **2022**, *21*, e202101502; [3] Hădărugă, N.G.; Hădărugă, D.I., Stilbenes and Its Derivatives and Glycosides. In: *Handbook of Food Bioactive Ingredients*, Springer Nature, Cham, **2023**, pp. 487-544.